Hiljainen vallankumous

Kiinalainen Zhipu AI julkaisi 11. helmikuuta 2026 uuden GLM-5-mallinsa ilman suurta fanfaaria. Ei näyttävää keynote-esitystä, ei viikkojen mittaista ennakkohypetystä. Malli ilmestyi yksinkertaisesti Z.ai-alustalle ja Hugging Faceen - ja tekoälymaailma huomasi sen välittömästi.

Syitä on kolme, ja jokainen niistä on merkittävä yksinäänkin.

Ensinnäkin GLM-5 on ensimmäinen frontier-tason tekoälymalli, joka on koulutettu kokonaan Huawei Ascend -siruilla. Ei yhtään NVIDIA:n piiriä. Ei amerikkalaista teknologiaa. USA:n vientirajoitusten oli tarkoitus hidastaa Kiinan tekoälykehitystä - GLM-5 todistaa, että ne pikemminkin kiihdyttivät sitä.

Toiseksi GLM-5 on avoin malli MIT-lisenssillä. Kuka tahansa voi ladata sen, ajaa omilla palvelimillaan ja rakentaa sen päälle liiketoimintaa ilman lisenssimaksuja.

Kolmanneksi GLM-5:n API-käyttö maksaa murto-osan siitä, mitä Claude Opus 4.6 tai GPT-5.2 veloittavat - ja suorituskyky on monissa tehtävissä samaa luokkaa.

Julkaisun ajoitus tekee siitä erityisen kiinnostavan. Samalla viikolla Anthropic julkaisi Opus 4.6:n nopeutetun version ja OpenAI toi GPT-5.3 Codexin Codex-alustalle. Kilpailu huipulla ei ole koskaan ollut näin tiivistä.

Mikä on GLM-5?

Zhipu AI (kansainvälisesti Z.ai) on Tsinghua-yliopiston spinoff-yritys, joka perustettiin vuonna 2019. Yrityksen taustalla ovat professorit Tang Jie ja Li Juanzi, jotka johtivat Tsinghuan Knowledge Engineering -tutkimusryhmää. Toimitusjohtajana toimii Zhang Peng.

Yritys listautui Hong Kongin pörssiin tammikuussa 2026 ja keräsi 558 miljoonaa dollaria. Listautumisanti ylimerkittiin yli tuhatkehtaisesti. Markkina-arvo IPO:n jälkeen oli noin 7,1 miljardia dollaria - mikä tekee Zhipusta yhden maailman arvokkaimmista tekoälyyn keskittyvistä yrityksistä.

Zhipulla on 2,9 miljoonaa käyttäjää ja 12 000 yritysasiakasta. Aiemmat mallit (ChatGLM, GLM-4-sarja) olivat vahvoja erityisesti kiinankielisessä käytössä, mutta GLM-5 tähtää ensimmäistä kertaa suoraan globaaliin kilpailuun.

Tekniset spesifikaatiot

GLM-5 käyttää Mixture of Experts (MoE) -arkkitehtuuria. Käytännössä tämä tarkoittaa, että mallissa on 745 miljardia parametria, mutta jokaista syötettä käsittelee kerrallaan vain 40 miljardia. Malli koostuu 256 erikoistuneesta "asiantuntijasta", joista 8 aktivoituu per token.

Vertauskuvallisesti: GLM-5 on kuin 256 hengen asiantuntijapaneeli, josta jokaiseen kysymykseen vastaa kahdeksan relevanteinta osaajaa. Lopputulos on lähellä sitä, mitä koko paneeli tuottaisi, mutta laskentatehoa kuluu murto-osa.

Ominaisuus

GLM-5

Parametrit (yhteensä)

745 miljardia

Aktiiviset parametrit

40 miljardia

MoE-asiantuntijat

256 (8 aktiivista/token)

Konteksti-ikkuna

200 000 tokenia

Maksimituloste

131 000 tokenia

Harjoitusdata

28,5 biljoonaa tokenia

Harjoitussirut

100 000 Huawei Ascend

Lisenssi

MIT (avoin)

GLM-5 käyttää DeepSeek Sparse Attention -mekanismia, joka mahdollistaa 200 000 tokenin konteksti-ikkunan tehokkaasti ilman perinteisten transformereiden neliöllistä laskentakustannusta. Malli on koulutettu 28,5 biljoonalla tokenilla - merkittävä kasvu edeltäjän GLM-4.5:n 23 biljoonasta.

Malli tukee tällä hetkellä vain tekstiä (syöte ja tuloste). Kuvien, äänen ja videon käsittelyyn Zhipulla on erilliset mallit (GLM-Image, GLM-Voice), mutta GLM-5 itsessään on puhdas kielimalli.

Benchmark-vertailu: GLM-5 vs. länsimaiset huippumallit

Kuinka hyvä GLM-5 todella on? Riippumattomat testit antavat melko selkeän kuvan.

Avoimien mallien ykkönen

Artificial Analysis, yksi arvostetuimmista riippumattomista tekoälymallien arviointialustoista, nimesi GLM-5:n avoimien mallien johtajaksi. Se on ensimmäinen avoin malli, joka saavutti 50 pisteen rajan Artificial Analysisin Intelligence Indexissä - kaventaen merkittävästi kuilua suljettuihin kaupallisiin malleihin.

Text Arena -vertailussa GLM-5 nousi avoimien mallien ykköseksi 1 452 pisteellä, sijoittuen kokonaislistalla 11:nneksi. Se on samalla tasolla Claude Sonnet 4.5:n ja GPT-5.1-highin kanssa.

Vertailu suljettuihin malleihin

Mittari

GLM-5

Claude Opus 4.6

GPT-5.2

Huomio

AA Intelligence Index

50

53

-

GLM-5 lähellä, ero 3 pistettä

AA Agentic Index

63 (#3)

#1

#2

GLM-5 kolmas kokonaisuudessa

SWE-bench Verified

77,8%

~81%

-

Koodauksessa lähellä Claudea

AA-Omniscience Index

-1

-

-

GLM-5 alan paras (harha-arvot)

GDPval-AA ELO

1 412

#1

#2

Käytännön työtehtävissä kolmas

BrowseComp

75,9%

-

-

Web-selaustehtävät

Text Arena

#11 (1 452)

-

-

Samalla tasolla Sonnet 4.5:n kanssa

Tuloksista piirtyy selkeä kuva: GLM-5 ei ole paras missään yksittäisessä kategoriassa, mutta se on vaikuttavan lähellä huippua lähes kaikissa. Koodauksessa se jää hieman Claude Opus 4.6:sta (77,8% vs. ~81% SWE-benchissä), mutta ero on pieni. Agenttitehtävissä se sijoittuu kolmanneksi - Claude Opuksen ja GPT-5.2:n jälkeen, mutta muiden edelle.

Missä GLM-5 loistaa

GLM-5:n selkein vahvuus on harha-arvojen vähyys. Artificial Analysisin AA-Omniscience Indexissä GLM-5 saavutti tuloksen -1, mikä on alan paras. Tulos parani 35 pistettä edeltäjästä GLM-4.7:stä, ja harha-arvojen (hallusinaatioiden) määrä laski 56 prosenttiyksikköä.

Tämä tarkoittaa, että GLM-5 on oppinut tunnistamaan, milloin se ei tiedä vastausta - ja pidättäytyy vastaamasta sen sijaan, että keksisi uskottavan mutta virheellisen vastauksen. Tämä on kriittinen ominaisuus esimerkiksi lakipalveluissa, terveydenhuollossa ja journalismissa, joissa väärä tieto voi aiheuttaa vakavaa haittaa.

Zhipu AI käyttää tähän "slime"-nimistä vahvistusoppimistekniikkaa, jonka yksityiskohdat on kuvattu mallin teknisessä blogissa.

Missä GLM-5 jää jälkeen

Rehellisyyden vuoksi on syytä mainita myös puutteet:

  • Multimodaalisuus: GLM-5 käsittelee vain tekstiä. Kimi K2.5 tukee kuvia, ja Gemini 3 Pro käsittelee tekstiä, kuvia ja videota.

  • Puhdas päättely: Abstraktissa päättelyssä (ARC-AGI-2) GPT-5.2 johtaa selvästi. Claude Opus 4.6 on niin ikään edellä reasoning-tehtävissä.

  • Kielituki: Pääkielet ovat kiina ja englanti. Suomen kielen tuki on todennäköisesti heikko.

  • Konteksti: 200 000 tokenia on hyvä, mutta Gemini 3 Pro tarjoaa miljoonan tokenin ikkunan.

Hinta-vallankumous

GLM-5:n ehkä mullistavin ominaisuus ei ole mikään yksittäinen benchmark-tulos, vaan sen hinta.

API-hinnoittelu

Kolmannen osapuolen API-palveluissa (Novita, DeepInfra, GMI Cloud) GLM-5:n hinnoittelu on:

  • Syöte: ~$0,80-1,00 per miljoona tokenia

  • Tuloste: ~$2,56-3,20 per miljoona tokenia

Vertailun vuoksi: Claude Opus 4.6 ja GPT-5.2 ovat moninkertaisesti kalliimpia. Artificial Analysisin mukaan GLM-5 sijoittuu älykkyyden ja hinnan suhteessa Pareto-optimaaliselle käyrälle - eli se tarjoaa parhaan mahdollisen älykkyyden suhteessa kustannukseen.

Käytännön esimerkki: Jos yritys ajaa pitkiä agenttitehtäviä, joissa malli tuottaa miljoonia tokeneita päivässä, ero kustannuksissa voi olla tuhansia euroja kuukaudessa.

MIT-lisenssi ja avoimuus

GLM-5:n painot ovat vapaasti ladattavissa Hugging Facesta MIT-lisenssillä. Tämä tarkoittaa:

  • Mallia saa käyttää kaupallisesti ilman lisenssimaksuja

  • Sen voi ajaa omilla palvelimilla (tietoturva ja tietosuoja omissa käsissä)

  • Sitä saa muokata ja hienosäätää omiin tarpeisiin

Käytännön rajoitus: Mallin ajaminen vaatii noin 1 490 gigatavua muistia BF16-tarkkuudella. Tämä tarkoittaa useita huippuluokan GPU-kortteja tai pilvipalvelun käyttöä. Tavallisen käyttäjän kotikoneella GLM-5:ttä ei ajeta.

Useimmat hyötyvätkin mallista API-palveluiden kautta, joissa kynnys on matala ja kustannus pieni.

Mitä hintakilpailu tarkoittaa kaikille

GLM-5 ei ole ainoa edullinen vaihtoehto. DeepSeek, Qwen ja Kimi painostavat kaikki hintoja alas. Tämä kilpailu hyödyttää jokaista tekoälyn käyttäjää:

  • OpenAI ja Anthropic joutuvat reagoimaan hinnoitteluun

  • Pienet ja keskisuuret yritykset saavat frontier-tason kyvykkyyden ulottuvilleen

  • Kehittäjät voivat kokeilla ja prototypoida ilman merkittävää budjettia

Geopoliittinen merkitys: piirisaarto ei toiminut

GLM-5:n taustalla on yksi 2020-luvun merkittävimmistä teknologiapoliittisista kokeiluista - ja sen epäonnistuminen.

USA:n vientirajoitukset

Yhdysvallat on vuodesta 2022 lähtien rajoittanut huipputason tekoälysiruen vientiä Kiinaan. Tavoite oli selvä: hidastaa Kiinan tekoälykehitystä estämällä pääsy NVIDIA:n ja AMD:n tehokkaimpiin piireihin.

GLM-5 osoittaa, että strategia ei saavuttanut tavoitettaan. Zhipu AI koulutti mallin kokonaan 100 000 Huawei Ascend -sirulla käyttäen kiinalaista MindSpore-ohjelmistokehystä. Lopputulos kilpailee suoraan mallien kanssa, jotka on koulutettu NVIDIA:n huippusiruilla.

Tämä ei tarkoita, etteikö vientirajoituksilla olisi ollut mitään vaikutusta. Kiinan sirujen tehokkuus on todennäköisesti heikompi piiriä kohden, mikä tarkoittaa suurempia klustereita ja korkeampia energiakustannuksia. Mutta lopputulos - frontier-tason malli - saavutettiin siitä huolimatta.

Kaksi ekosysteemiä

Tekoälymaailma on jakautumassa kahteen rinnakkaiseen ekosysteemiin:

Läntinen ekosysteemi:

  • Sirut: NVIDIA (A100, H100, B200)

  • Suljetut mallit: OpenAI, Anthropic, Google

  • Regulaatio: EU AI Act, USA:n säännöt

Kiinalainen ekosysteemi:

  • Sirut: Huawei Ascend, omat ratkaisut

  • Avoimet mallit: GLM-5, DeepSeek, Kimi, Qwen

  • Strategia: Avoimuudella markkinaosuutta, kotimaisella teknologialla riippumattomuutta

Mielenkiintoista on, että kiinalaiset toimijat ovat valinneet avoimuuden strategiakseen. Kun OpenAI ja Anthropic pitävät mallinsa suljettuina, Zhipu, Alibaba (Qwen) ja DeepSeek jakavat omansa avoimesti. Tämä ei ole altruismia vaan strategia: avoimet mallit leviävät nopeammin, rakentavat ekosysteemiä ja luovat riippuvuuksia.

EU:n ja Suomen asema

Eurooppa on kahden blokin välissä. EU AI Act säätelee tekoälyn käyttöä, mutta ei ota kantaa mallien alkuperään. Suomalainen yritys voi teknisesti käyttää GLM-5:ttä yhtä hyvin kuin Claudea tai ChatGPT:tä.

Käytännössä kysymykset ovat monimutkaisempia: Missä data käsitellään? Kenen lainsäädännön alla? Millaiset tietoturvakäytännöt palveluntarjoajalla on? Nämä ovat samoja kysymyksiä, joita minkä tahansa pilvipalvelun kanssa joutuu pohtimaan - mutta kiinalaisiin palveluihin liittyy lisäkerros geopoliittista epävarmuutta.

Kiinalaisten mallien nousu

GLM-5 ei ole yksittäinen ilmiö. Se on osa laajempaa aaltoa, jossa kiinalaiset tekoälyyhtiöt ovat nousseet frontier-tasolle ja kilpailevat keskenään eri strategioilla.

Neljä kiinalaista haastajaa

Kimi K2.5 (Moonshot AI) julkaistiin tammikuussa 2026. Sen erikoisuus on Agent Swarm -teknologia, joka koordinoi jopa sataa tekoälyagenttia samanaikaisesti. Siinä missä GLM-5 keskittyy yhden agentin syvälliseen päättelyyn, Kimi panostaa useiden agenttien rinnakkaiseen työskentelyyn. Parametreja on biljoona.

Qwen 3.5 (Alibaba) kilpailee avoimuudella. Apache 2.0 -lisenssi on vielä vapaampi kuin GLM-5:n MIT-lisenssi kaupallisessa käytössä. Qwen on erityisen vahva päättelytehtävissä, ja sen Qwen3-Max-Thinking -versio kilpailee suoraan GPT-5.2:n kanssa tietyissä vertailuissa.

DeepSeek V3 järisytti tekoälyteollisuutta alkuvuodesta 2025 osoittamalla, että frontier-tason mallin voi kouluttaa murto-osalla kilpailijoiden kustannuksista. Yhtiön seuraava iso päivitys on viivästynyt, mutta DeepSeekin teknologia (mm. Sparse Attention) elää GLM-5:n sisällä.

MiniMax M2.1 keskittyy kehittäjäystävälliseen hinnoitteluun ja käyttökokemukseen.

Eri strategiat, sama tavoite

Malli

Strategia

Erikoisuus

GLM-5

Laitteistoriippumattomuus, luotettavuus

Matalin harha-arvo, Huawei-sirut

Kimi K2.5

Moniagenttikoordinaatio

100 agenttia rinnakkain

Qwen 3.5

Avoimen lähdekoodin johtajuus

Apache 2.0, vahva päättely

DeepSeek

Kustannustehokkuus

Halvimmat koulutuskustannukset

Kiinalaisten mallien yhteinen piirre on avoimuus. Ne kaikki ovat ladattavissa ja muokattavissa, toisin kuin OpenAI:n ja Anthropicin suljetut mallit. Tämä strategia rakentaa ekosysteemiä ja nopeuttaa käyttöönottoa globaalisti.

Käytännön merkitys: kuka hyötyy GLM-5:stä?

Kehittäjille

GLM-5 on käytettävissä OpenRouterissa, Novitassa, DeepInfrassa ja Together AI:ssa. Se integroituu suoraan olemassa oleviin työkaluihin kuten Claude Codeen kolmannen osapuolen mallina.

Koodauksessa GLM-5 on lähellä Claude Opusta (77,8% vs. ~81% SWE-benchissä) mutta huomattavasti edullisempi. Pitkissä agenttiajoissa, joissa tokenimäärät kasvavat suuriksi, hintaero voi olla merkittävä. Eräs kehittäjä raportoi X:ssä integroineensa mallin omaan stackiinsa 30 minuutissa.

AICodeKing-benchmarkissa GLM-5 voitti sekä Claude Opus 4.6:n että GPT-5.3 Codexin, mikä herätti paljon huomiota kehittäjäyhteisössä.

Yrityksille

Yritykset voivat hyötyä GLM-5:stä erityisesti ei-kriittisissä tehtävissä, joissa kustannustehokkuus on tärkeämpää kuin viimeinen prosenttiyksikkö suorituskyvyssä. Sisällöntuotanto, data-analyysi, koodikatselmointi ja dokumentaation generointi ovat esimerkkejä.

Huomioitavaa:

  • Tietoturva: Varmista, missä data käsitellään. API-palveluiden palvelimet sijaitsevat eri maissa.

  • Sääntely: EU:n AI Act asettaa vaatimuksia tekoälyn käytölle, mutta ei rajoita mallien alkuperää.

  • Kielituki: Suomenkielinen käyttö on todennäköisesti heikompi kuin Claudella tai GPT:llä.

Tutkijoille

GLM-5 tarjoaa tutkijoille frontier-tason mallin MIT-lisenssillä. Erityisen kiinnostavaa on:

  • Slime-tekniikka: Uusi lähestymistapa harha-arvojen vähentämiseen vahvistusoppimisen kautta

  • DeepSeek Sparse Attention: Tehokas pitkien kontekstien käsittely

  • MoE-arkkitehtuuri: 256 ekspertin järjestelmä tutkimuskäyttöön

Tavallisille käyttäjille

GLM-5:tä voi kokeilla ilmaiseksi osoitteessa chat.z.ai. Coding Plan Max -tason tilaajat saavat täyden pääsyn malliin. Käyttökokemus on raporttien mukaan sujuva, mutta palvelu on suunnattu ensisijaisesti englannin- ja kiinankielisille käyttäjille.

Yhteenveto: avoin, edullinen ja yllättävän hyvä

GLM-5 ei ole yksittäinen tuotejulkaisu. Se on merkki laajemmasta muutoksesta tekoälyteollisuudessa.

Kolme avainviestiä:

1. Suljettujen ja avoimien mallien kuilu kapenee nopeasti. GLM-5 on ensimmäinen avoin malli, joka saavutti 50 pisteen rajan Artificial Analysisin Intelligence Indexissä. Ero Claude Opus 4.6:een on enää 3 pistettä. Vuosi sitten vastaava ero oli kymmeniä pisteitä.

2. Kiina on nyt tasavertainen kilpailija, ei seuraaja. GLM-5, Kimi K2.5, Qwen 3.5 ja DeepSeek osoittavat, että kiinalaiset tekoälyyhtiöt tuottavat frontier-tason malleja omalla teknologiallaan, omalla aikataulullaan ja omalla strategiallaan. Vientirajoitukset eivät pysäyttäneet kehitystä.

3. Hintakilpailu kiihtyy ja hyödyttää kaikkia. Kun frontier-tason kyvykkyys on saatavilla murto-osalla aiemmista hinnoista, tekoälyn käyttö demokratisoituu. Tämä pakottaa myös OpenAI:n ja Anthropicin reagoimaan hinnoitteluun.

Seurattavaa lähikuukausina

  • DeepSeekin seuraava iso malli - viivästynyt, mutta odotettu

  • Claude Opus 4.6:n nopeutettu versio - Anthropicin vastaisku

  • EU:n linja kiinalaisiin malleihin - sääntely vai avoimuus?

  • Huawei Ascend -sirujen kehitys - pysyvätkö kiinalaiset sirut perässä?

GLM-5 muistuttaa, että tekoälyn kehitys on globaali ilmiö. Paras malli ei välttämättä tule enää Piilaaksosta - ja se saattaa olla ilmainen.

Haluatko sparrailla AI:sta etäkahvitellen?

Tekoäly voi olla voimakas työkalu, ja näiden aloittelijaystävällisten vaihtoehtojen avulla voit hyödyntää sitä omissa projekteissasi – olipa kyseessä sisällöntuotanto, ohjelmointi, markkinointi tai oppiminen.

Jos kaipaat koulutusta tekoäly-työkalujen käyttöön, nappaa tästä sitoumukseton etäkahvitteluaika ja jutellaan tarpeistasi 👇

Reply

Avatar

or to participate

Keep Reading